Consistently ranked as a premier builder of mission critical facilities, DPR Construction provides diligent, hands-on management—from site selection and analysis to single point-of-failure identification to construction, startup and commissioning.



November 22, 2019

DPR Leverages Data Center Expertise in Booming Atlanta Market

Data center development has surged in the Atlanta metro area in recent years, fueled by rich connectivity options, reasonable power costs, low natural disaster risk, easy access to tech talent, and a state tax break passed by Georgia legislators in 2018 designed to spur growth in the data center market.

Databank building in Midtown Atlanta Photo courtesy of Halkin I Mason Photography

Long recognized as a financial technology hub (Atlanta is a clearinghouse for some 70% of all electronic payments worldwide and home to 16 Fortune 500 companies), the city has garnered recognition in recent years as the 7th largest wholesale data center market in the United States according to CBRE, with 132.5 MW of inventory. Forbes named Atlanta one of the top five up-and-coming “tech meccas” in 2017. And in a nod to the region’s growing data center market, Bisnow held its Data Center Investment Conference & Expo in Atlanta the past two years, while CAPRE held its fourth annual Data Center and Cloud Infrastructure Summit in Atlanta this August. CBRE Research recently ranked Atlanta fifth in the U.S. for the region’s 14.5 MW currently under construction and sixth in the nation for its 40% growth in inventory since 2015 (North American Data Center Report H1 2019).

The leading names in data center ownership are expanding their presence in the Atlanta market – enabling the region to hold its own against other leading powerhouse data center markets throughout the U.S.

DPR Construction, a leading builder of data centers and advanced technology facilities, has found itself in the midst of this boom.

DPR recently completed two major data center projects for clients in the burgeoning Atlanta region; a signature data center project in Midtown Atlanta for leading enterprise-class data center provider Databank and a 70,000-sq.-ft. data center facility for Flexential on their Alpharetta campus. The projects showcase how DPR was able to leverage its technical expertise and its national data center experience to support customers’ needs for highly technical, mission critical projects in the Southeastern U.S.

Databank's central energy plant Photo courtesy of Halkin I Mason Photography

Databank Expands to Atlanta Market

The three-story, 110,000-sq.-ft. data center and adjoining 645,000-sq.-ft., 21-story mixed use office complex are the latest addition to the Georgia Institute of Technology’s “Tech Square.” The project is Databank’s first data center in Atlanta, representing the company’s expansion into its ninth U.S. market.

Databank is leasing 30% of the data center facility to Georgia Tech for its high-performance, research computing needs. The ATL1 facility will also house part of the Southern Crossroads network node which provides high-speed, high bandwidth connectivity to research and education sites throughout the region and across the nation.

Georgia Tech’s fleet of super computers operate at five-times the density of traditional computer racks and produce heat loads that would overwhelm traditional, air-cooled data centers. Working with DPR, DataBank and Georgia Tech opted to address those unusual heat loads with rack-mounted heat exchanges that allow Georgia Tech to significantly reduce the energy required to manage that heat.

DPR completed the initial 3.2-megawatt buildout on time and under budget. The space is now being operated by Georgia Tech for university support and research activities and by DataBank as part of its Atlanta service offering for companies seeking colocation, cloud or hybrid cloud solutions.

Additionally, DPR was selected as the general contractor for both the Coda Tower project (built for Portman Holdings) and Databank’s ATL1 data center project, employing two separate project teams that worked simultaneously on site. The Databank project team overcame an array of logistical, technical, and project management hurdles to complete the facility in February of 2019, just 11 months after construction began. The complexity of the conjoined development was further compounded by an extremely tight development schedule, mid-project design changes, equipment issues, ongoing weather factors, and finally, a construction moratorium enforced by the City of Atlanta to minimize any impact to the Super Bowl festivities.

“Our relationships with the subcontractors and vendors helped us cut short some of the long delivery equipment times so we could still meet our substantial completion date,” commented DPR project executive Vikesh Handratta. “Everyone stepped up to help find solutions whenever we faced a challenge on this project.”

Handratta said that clear, open communication, a highly collaborative and committed project team and DPR’s ability to leverage its national data center knowledge base were all critical factors in the project’s success. “Everybody had one end goal in mind: let’s be successful as a team,” he said.

Databank's data center floor Photo courtesy of Halkin I Mason Photography

Solution-Oriented Approach

Success on the project required the team to innovate solutions to myriad challenges that came up. Among them:

  • Groundbreaking on the Databank project was dependent on Coda tower’s completion of five levels of parking below the plaza level, which is the ground floor for the data center. Although the plaza level had some challenges in delivering as originally planned, the team came up with a strategy to mitigate that delay and still complete the data center on schedule.
  • Constructing the project in the middle of busy midtown Atlanta created some logistical challenges which required DPR to hyper coordinate activities with subs and suppliers and the city of Atlanta on all project deliveries and equipment installation activities that impacted traffic.
  • Transporting the chillers inside the building through the Coda tower loading dock proved to be a challenge that required careful preplanning and coordination ahead of time with the trucking and equipment vendors.

Tapping DPR’s National Data Center Expertise

DPR leveraged its national data center expertise to assist with commissioning, bringing in a highly experienced MEP coordinator from the West Coast to work alongside DPR’s Atlanta-based team.

“As a national data center builder, we were able to easily bring in someone who was extremely knowledgeable about all stages of data center commissioning to work hand-in-hand with our project-based commissioning agent, which was really helpful,” Handratta concluded. “Leveraging the power of our nationwide knowledge base and the depth of DPR’s expertise as a technical builder helped us deliver a first-rate data center project for Databank.”

Facility for Flexential

That same approach was also key to DPR’s success on the new 70,000-sq.-ft. Flexential data center facility in the northern Atlanta suburb of Alpharetta, completed this April. The project followed another recent data center project that DPR completed for Flexential in the Pacific Northwest, boosting the company’s national colocation footprint to more than 3.1 million square feet.

Flexential's data center cage Photo courtesy of Gregg Willett Photo

Constructed on the site of a former parking lot, the new facility ties into an existing two-story data center on Flexential’s Alpharetta campus. It contains 3 megawatts of UPS power, two 2.5 megawatt generators, two 500-ton air cooled chillers and 4 switchgear lineups.

DPR broke ground on the project in July 2018 and successfully completed it on schedule just nine months later. The team contended with one of the region’s wettest seasons on record, facing 30 rain days and more than 59 inches of rain during construction.

“It was substantially more rain than anticipated, but we were able to fast track a few scopes of work and still finish the project within the timeframe we originally told the owner,” said DPR project manager Robby Wright. “That was a big accomplishment.”

Flexential Data Center electrical switchgear Photo courtesy of Gregg Willett Photo

The project was the first to employ Flexential’s newest data center design. DPR relied on its extensive bank of data center knowledge and previous work to overcome various hurdles and even shared lessons learned with a competitor Nashville who built Flexential’s second project with that same design in Nashville.

Wright said DPR’s consistency across its data center work processes was a key success factor on the Alpharetta data center project. Similar to the Databank project, the Flexential project team also brought in a national MEP expert to help guide the project through commissioning. “DPR has many resources across the country and we definitely appreciate leveraging those as much as possible to benefit our customers,” he added.

October 2, 2019

The Cost to Retrofit

This article, co-written by DPR's Mark Thompson and Mark Whelpley, first appeared in 7x24 Exchange's Magazine 2019 Fall issue.

Picture this scenario: an up-and-coming data center developer is looking to expand its portfolio in the Silicon Valley data center hub of Santa Clara. The company initially casts a wide net looking for the right property on which to build its new ground-up colocation facility – only to discover that undeveloped or greenfield land is a scarce commodity in this densely developed, high tech mecca.

The developer launches a new search, this time for an existing building it could retrofit and convert to data center use. In short order it finds a candidate that seems to fit the bill: an older industrial office building that has been sitting vacant for a few years. It is priced to sell. The building’s footprint is workable, the structure is intact, and both buyer and seller are motivated. Add some extra power and cabling equipment, the developer reasons, and this dusty old office space will easily transform into a profitable data center facility. An added bonus: it’ll be up and running much quicker than building a brand-new facility, enabling the developer to move in tenants, start collecting rent and begin making a return on investment that much sooner.

The developer hires a general contractor who specializes in commercial building construction but who recently jumped into the booming data center market and now has a couple of data center projects under its belt. An architect is also brought on board, and together they devise a plan to retrofit the facility. It may not be perfect, but they assure the developer they can make it work – and that the planned retrofit will save the company time and money in the long run.

The purchase is made, and the first shovel hits the ground.

As construction gets underway, the project team quickly realizes the building’s structural capacity doesn’t support the volume of heavy equipment – including racks of servers, chillers and air handling units – that this modern data center requires. In addition, there isn’t enough land around the building’s perimeter to locate the backup generators outside. They’ll need to be installed on the building’s rooftop instead – but it turns out the roof also isn’t designed to support that amount of weight.

It’s starting to look like a complete gut and reconstruct will be required.

And then there’s the matter of the available power onsite. The contractor assumed that since this is a reuse of an existing building, power supply wouldn’t be a major issue. Now they find out it could literally take months to work with the utility company to bulk up the site’s power infrastructure in order to meet the data center’s needs. The anticipated time and cost advantages of this property are quickly evaporating, and the developer is starting to think it has made a big mistake.

The Right Approach: Steps to Success

This fictional scenario may be a bit of an oversimplification and, certainly, it represents a worst-case situation, but it’s not an entirely unrealistic depiction of what can happen when an owner doesn’t properly evaluate or conduct complete due diligence on a property that they plan to convert into a data center facility. How should this process have been approached instead? Let’s examine the steps that owners and their teams should follow to ensure their data center retrofit projects are successful.

The very first step the owner and the design and construction team should take is to clearly define what constitutes success for them on their data center project. Is speed to market most important, or do cost savings or energy efficiency take precedence? Is landing a specific tenant or providing service in a specific area the overriding concern? A building repurpose project may or may not end up being less costly than a ground-up project; depending on the circumstances, it may even cost more. The former “hidden gems” of available building flips in places like Silicon Valley, the Dallas-Fort Worth Metroplex, Loudoun County and other major data hubs are becoming fewer and farther between. Even in “edge” markets, the number of existing buildings that can be turnkey solutions for data halls are rare.

Realistic Expectations

It is equally important for the owner to set early, realistic expectations of what it expects to achieve on the project and to carefully assess how easily and cost effectively a particular building could be retrofitted to new use. The time to do the homework and thoroughly evaluate candidates for a prospective retrofit/conversion is before the property is purchased, not after. Proper vetting is critical.

And that vetting process applies to selection of the design and construction team as well. While the aforementioned developer was on the right path engaging the contractor and architect prior to purchasing the property, the selected contractor that lacked historical knowledge or expertise specifically relating to the rapidly evolving data center market. As a result, the contractor didn’t anticipate some of the hidden pitfalls and “gotchas” that might have been caught by a more seasoned team. The overly optimistic “we’ll make it work” approach did not serve the owner well in this case either or help the owner to make a fully informed decision about the costs and challenges of retrofitting this property.

Bottom line? Bring a contractor and/or designer on board early in the process. Choose firms with extensive experience in data center construction, including both ground-up and retrofit projects. Ideally, they will have a decade or more worth of data center projects in their portfolio and be ranked among the Engineering News-Record’s top 5 or 10 data center contractors. A qualified general contractor or designer can skillfully guide the owner through the process of assessing prospective retrofit candidates based on a set of clear-cut criteria – and will help the owner make the best decisions.

An Objective Eye: Key Evaluation Criteria

Once the owner has selected the team and they’ve jointly scouted for and identified a few potential retrofit candidates, it’s time to objectively weigh the options. This step means taking an in-depth look at what’s “under the hood” of a given building and considering how well it meets the project goals. Think of it like bringing along a qualified mechanic to inspect the used car you’re considering buying. It may cost more up-front paying for the mechanic’s time but could well save you from making a costly decision in the long run.

There are at least 8 major criteria that should be carefully assessed on every data center candidate. They include:

  • Roof Structural Capacity. Data centers require roofs with a high structural capacity since equipment and heavy systems are often hung from or attached to the roof. Depending on the building’s former use, the roof may not be up to the task and could be a big-ticket upgrade. For data centers, a roof rating of over 35 lbs./sq. ft. is best; 25-20 lbs./sq. ft. is good; and less than 15 lbs./sq. ft. falls squarely in the “bad” category.
  • Floor Capacity. The racks and computer equipment that go into data centers demand a high floor capacity, something you typically won’t find when converting from an office building, call-center, multi-story structure or the like. Retrofitting this infrastructure is costly and may require tearing down and starting from scratch. For a rule of thumb, a building with a floor capacity of over 250 lbs./ft. is best; 125-200 lbs./ft. is good; and 125 lbs./ft. lands in the “bad” category.
  • Structural Code. There have been three major building code revisions in the last 10 years or so, including in 2010, 2013 and 2016. This means selecting a building constructed prior to 2010 may require extensive structural changes to bring it up to current standards. Buildings constructed between 2010 and 2013 are evaluated as “good” and require more minor changes, while the “best” rating in this category are buildings designed to the latest uniform building code standards of 2016.
  • Structural System. Hand-in-hand with evaluating a building’s structural code is its type of structural system. Post-tensioned or truss systems, found in buildings constructed during the 1980s and 1990s, are poor candidates for cost-effective retrofits, requiring extensive reinforcing and rebuilding. Moment frame buildings are better, while steel frame structures using buckling restraining brace frames (BRBs) are ideal candidates in high seismic zones like California. In addition, know the Importance Factor assigned to a given structure, as it will indicate how much structural redesign will be required to bring the new data center up to the necessary performance standards.
  • Mechanical & Electrical Equipment and Infrastructure. Two other key evaluation criteria are the age and condition of the existing building’s MEP equipment and its MEP infrastructure. Owners should understand that a former office building’s MEP system typically will not approach what is needed for data center usage and thus will likely require complete replacement. However, conversion of a former semiconductor facility or similar technical facilities may not require such extensive changes, depending on the age of the system. The rule of thumb: mechanical/electrical systems 15 years old or older score poorly in this category; 10-15 years old may be considered good depending on the type of facility it was; and less than five years old falls into the good category.
  • Watt Density. The power density per square foot of the existing building is another key measurement. The trend is to put the highest load in the smallest space. Current density trends favor more than 150 watt/sq. ft. as the best performance criteria, while 100-150 watt/sq. ft. is considered “good,” and less than 100 watts/sq. ft. is bad and will require major upgrades.
  • Raised Access Floor. Raised access floors are part of most modern data centers. If the building is an older one, even if it has raised access floors, they are considered obsolete. That’s because modern rolling load capacity of the cabinets require raised access floors to be at least 36 inches high with a 3000-lb. load capacity. Replacement of raised access flooring is a big-ticket item that can run between $40-$50 per square foot on the West Coast, and $20-$25 per sq. ft. on the East Coast.

Bringing it All Together for a Successful Outcome

Armed with realistic expectations, understanding what constitutes success in meeting their project goals, assisted by a well-qualified team, and having thoroughly vetted and attained hard data on what each potential building candidate offers, the data center developer is now ready to make a well-informed decision. The savvy owner and project team also knows that since data center demands are constantly evolving, building flexibility into their project whether new or a retrofit is another essential consideration.

Technically and logistically demanding, the design and development of data centers will always present challenges as well as bottom-line opportunities for the owner. A smart approach goes a long way toward setting your next data center project up for success.

January 9, 2019

DLR Opens the Doors to its first “Mega Scale” Data Center

Digital Realty (DLR), a real estate investment trust and leading global data center provider, recently opened its latest ground-up data center in Ashburn, Virginia. With the concrete tilt-up panels set in place for the 230,000-sq.-ft. building this summer, DLR’s first deployment of the “mega scale” prototype data center came online in only eight months—from ground breaking to IST/Occupancy.

The project team manages the start of the tilt-up panel installation, a key project milestone.
The project team manages the start of the tilt-up panel installation, a key project milestone. Photo courtesy of Ulf Wallin

Built to host a single customer, the project required a unique approach. DLR worked collaboratively with the customer and project team as the design evolved and adjusted needs accordingly. The confidential end user requirements incorporated a high-density rack layout, optimizing the dollar value of each rack. With power and cooling accounting for 80 percent of the data center operating costs, customers are trending towards this high-density layout which reduces the distance in cable runs and networks, minimizing the cooling and space footprint, resulting in increased efficiency. Every two years, the number of transistors in a dense integrated circuit doubles, and the high-density layout offers more flexibility for these future needs.

DPR incorporated lessons learned from past buildouts through installing all future steel supports to eliminate re-work at the roof and through resequencing future equipment rigging to minimize the number of temporary roll-up doors. Now complete, Phase 1 includes a six-megawatt (MW) data hall. Once fully occupied, the building will have six separate data halls, built-out over the next two to three years, hosting 36MW of critical power.

More than 50 guests gathered to celebrate the opening of the new data center.
Now complete, Phase 1 includes a six-megawatt (MW) data hall. Once fully occupied, the building will have six separate data halls, built-out over the next two to three years, hosting 36MW of critical power Photo courtesy of Ulf Wallin

More than 50 guests, including the customer, design partners, subcontractors, craftspeople and DPR employees celebrated the achievement, as well as the hard work and dedication put forth by all involved with the project. “We can’t thank all of you enough for your efforts to bring this one home,” Dan Kingman, Director of Construction for DLR, told the team. “This was an incredibly impressive performance by the DPR team. This was one of the most challenging and important projects Digital Realty has ever completed, and you more than delivered. Looking forward to continuing to build great things with you.”

More than 50 guests gathered to celebrate the opening of the data center and take a tour of the site.
More than 50 guests gathered to celebrate the opening of the data center and tour the new site. Photo courtesy of Ulf Wallin
“We can’t thank all of you enough for your efforts to bring this one home,” Dan Kingman
“We can’t thank all of you enough for your efforts to bring this one home,” Dan Kingman, Director of Construction for DLR, told the team. “This was an incredibly impressive performance by the DPR team. This was one of the most challenging and important projects Digital Realty has ever completed, and you more than delivered. Looking forward to continuing to build great things with you.” Photo courtesy of Ulf Wallin

July 23, 2018

Tilt-Up Panels Enable Speed-to-Market at Digital Realty’s Ground-Up Data Center

In Ashburn, Virginia, Digital Realty’s (DLR) latest data center is rising from the ground up with tilt-up wall panels. Scheduled for completion in December 2018, the 230,000-sq.-ft. hyperscale data center is leveraging the cost and time savings of using tilt-up construction, a method in which large slabs of concrete are poured directly at the jobsite, then raised into position to form the building’s exterior walls.

DPR team
Speed-to-market is a critical factor for DLR, as the need for data centers designed to deliver services and content to support the world’s largest cloud platforms continues to grow. Photo courtesy of Ulf Wallin

Speed-to-market is a critical factor for DLR, as the need for data centers designed to deliver services and content to support the world’s largest cloud platforms continues to grow. With its customer’s needs in mind, the team chose tilt-up panels to eliminate the traditional limits of the size of panels that could be transported to the site. Since larger panels were poured onsite, less panels were needed to complete the structure, further speeding up the process. The tilt-up panels also allowed for early scope release of certain trades, specifically the plumbing and structural steel subcontractors, who installed plumbing risers and steel connections before the tilt-up panels were lifted, saving time down the road.

Tilt up wall panels
Scheduled for completion in December 2018, the 230,000-sq.-ft. hyperscale data center is leveraging the cost and time savings of using tilt-up construction. Photo courtesy of Ulf Wallin

After pouring concrete walls around the building’s perimeter, the team began lifting the walls into place this summer. The process takes approximately 45 minutes per two-story panel, with the team installing between eight to ten panels per day. It will take 105 panels and 2,000 cubic yards of concrete to complete the perimeter of the data center.

Once complete, the data center will also include the build-out of a 6MW data center hall and will ultimately host 36MW of power.

April 2, 2018

DPR, Gensler/CCG Design-Build Team Helps Merck Achieve its First ENERGY STAR Certified Data Center

Merck K 22 data center rendering
Photo courtesy of Gensler

Energy efficiency is a challenge for many mission critical, energy-intensive data centers, but top pharmaceutical manufacturer Merck and Company’s new Tier III data center facility in Kenilworth, New Jersey has achieved just that. The facility recently received coveted ENERGY STAR certification from the U.S. Environmental Protection Agency (EPA).

Delivered by the integrated design-build team of Merck, DPR, Gensler and CCG, the data center has been commissioned to satisfy Merck’s stringent design criteria and performance-based certification process to earn ENERGY STAR designation. This is the first ENERGY STAR certified data center for Merck.

Designed and built in just eight months, the integrated team delivered the facility a full month ahead of schedule. The project scope included conversion of a one-story, steel-framed manufacturing building into a new state-of-the-art energy efficient data center. The 42,000-sq.-ft. facility includes two data halls and administrative support space. Major components include a chilled water cooling system utilizing prefabricated chiller plants and computer room air handler units in each data hall, and an electrical system comprising two power train systems in an N+1 redundancy configuration. Each of those systems consists of switchgear with dedicated standby generators and four uninterruptable power supply modules.

DPR’s Brett Korn pointed out that the data center’s ENERGY STAR designation translates into real operational savings for Merck, estimated at around 5 percent of the facility’s typical operating budget. Achieving ENERGY STAR status also highlights the responsibility global market leaders like Merck place on reducing carbon footprint and lowering operating costs through environmentally responsible development.

Korn added, “ENERGY STAR certification shows that a company is looking to reduce costs and to operate the facility in the most efficient way possible, even while focused on creating highly reliable infrastructure. In data centers, you’re putting in redundant equipment which can impact energy efficiency. By installing highly energy efficient data processing equipment that allows the facility to operate at higher temperatures, Merck achieved maximum efficiencies and lowered its operating costs. Monitoring and documenting the equipment’s performance for a full year afterwards was key and takes time and patience.”

Photo courtesy of ENERGY STAR

Engaging a design-build team with the level of technical construction expertise and data center experience that Merck, DPR, CCG and Gensler possess was also crucial to the project’s success. The project team focused on achieving energy efficiency goals from the onset. The team meticulously tracked and adhered to performance milestones to help the facility achieve both ENERGY STAR status and LEED Silver certification from the US Green Building Council.

At the end of the day, Korn pointed out that multiple factors contributed to driving the project forward to successful completion and to helping it attain ENERGY STAR status, including:

  • a knowledgeable motivated client committed to achieving specific energy-related savings goals and willing to take a different path in the design, construction, operation and monitoring of their data center facility;
  • a highly experienced project team that pursued targeted energy-related goals from day one, understanding if any system deviated from pre-established guidelines, it could not negatively impact the energy consumption of the facility;
  • the appointment of specific individuals on the project team responsible for actively tracking and monitoring the design criteria, systems, and performance indicators to ensure milestones were met; and
  • the team’s willingness to innovate by employing lean construction and extensive levels of prefabrication (estimated at 25 percent of the facility).

This data center project has allowed Merck to meet its business objectives in the region while building a solid foundation for future work and forging a lasting bond between DPR and Merck. “Merck’s mission is ‘Inventing for Life’ by improving the quality of life for the world,” shared Michael J. Abbatiello, who oversaw creation of Merck’s design criteria document which outlines the required technical specifications used for bidding, detail designing, commissioning and operating the facility. “Not only do energy efficient facilities reduce operating costs, but they also represent the environmental benefits that align with our mission.”

The Merck project was DPR’s first major new customer for its New Jersey office, which initially opened in 2008 and has doubled in size, serving customers throughout the state.

ENERGY STAR certification requires that energy consumption data be continuously tracked and professionally verified using an online reporting tool via EPA, hitting specific benchmarks. Recertification is required annually. For more specifics, go to www.energystar.gov/ENERGYSTARS.

January 24, 2017

Bringing New Methods, Technology to Korea while Embracing Local Culture

At the Hana Financial Group Data Center in Cheongna International City, South Korea, a DPR team participated in a traditional Korean gosa ceremony, marking new beginnings, hope and good luck.

The first building in South Korea to be built through preconstruction and a GMP contract, the seven-story, 325,000-sq.-ft. data center and 18-story, 342,000-sq.-ft. administration building will rival both domestic and international facilities, and is a significant milestone for DPR’s Korea practice.


The Hana Financial Group Data Center is the first building in South Korea to be built through preconstruction and a GMP contract. (Rendering courtesy: Samwoo Architects & Engineers)

Providing guidance and leveraging our network in a construction management role, the DPR team helped Hana Bank choose an Uninterruptible Power Supply (UPS) system, the first one that has ever been installed globally. The diesel-driven rotary UPS in an isolated parallel (IP) configuration is backed up by batteries and makes sure the data center’s servers are always running with no glitches or loss of power. With expertise in the mission critical market, DPR helped the client and design team select this system, balancing the owner’s business requirements with optimizing the combination of redundancy, resilience, maintainability and cost.

The data center project has overcome challenges including troublesome soil condition as well as a local labor force that is unfamiliar with the mechanical and electrical systems used by global data centers. Led by Sangwoo Cho, who grew up in Korea, the in-country DPR team has remained continuously flexible to adapt to and integrate with the local culture, language and way of approaching situations. It’s a compromise of both sides adjusting to each other and finding a balance of what they are willing to change, while holding on to their respective values.


A rotary Uninterruptible Power Supply (UPS) system at the data center is just one way DPR has helped balance the owner’s business requirements with optimizing redundancy, resilience, maintainability and cost. (Photo courtesy: Grace Yoon)

“We understand how the locals do things here, and we have learned how to implement new techniques and strategies that can succeed within the current system in Korea. We are integrating into the local market,” said Hock Yap, DPR’s team leader on the Hana Data Center project.

DPR entered the Korean market in 2011, and has since collaborated with several large Korean general contractors, construction management firms and owners on the advancement and adoption of new technologies and ways to manage and deliver projects, including the Hana Financial Group campus, Gyeongsang National University Hospital and Parnas Tower.


The team participates in a traditional Korean gosa ceremony, marking new beginnings, hope and good luck. (Photo courtesy: Gerry Brown)

“In a sense, we are a breath of fresh air in Korea because we do things so progressively, with a focus on innovative technology. Whether it’s installing the first ever UPS system, collaborating on preconstruction, or introducing a new type of contract, sometimes our clients are in disbelief that we can actually do these things, but our achievements are real and can be backed up with data, facts and case studies,” said Yap.

Yap was one of the DPR team members who participated in the gosa ceremony, placing a symbolic envelope of money into the mouth of a pig’s head, as well as a dried pollock fish on the first server rack installed. Embracing the culture of Korea, the team is looking forward to building great things with hope and good fortune for decades to come.


The DPR team looks forward to building great things in Korea for decades to come. From left to right: George Pfeffer, Eric Lamb, Atul Khanzode, Sangwoo Cho, Gerry Brown, Grace Yoon, Hock Yap, DJ Yun, David Ibarra (Photo courtesy: Hock Yap)

December 22, 2016

DPR Experts Spark Conversation at Bisnow’s Annual Data Center Investment Expo

Two of DPR’s core market experts took the stage this winter at Bisnow’s Annual Data Center Investment Expo in Dallas, where industry leaders from across the country gathered to discuss the latest trends and innovations in data centers and industrial buildings.

Among the group of speakers and panelists were DPR’s Mark Thompson, national advanced technology market group leader and Andy Andres, a project executive in DPR’s Dallas office.

Throughout Thompson’s role as moderator of one of the panels, several topics about site selection were debated, including successful factors to hyperscale projects, and the process of locating strong regions and sites.

Thompson recalls the following takeaways:

  • The key to a hyperscale project’s success is speed-to-market and partnerships, due to rapid growth and extensive project scopes.
  • After the strategy behind the business direction is decided, regions are then considered and based around demand.
  • The two pivotal factors following site selection include core fundamentals of infrastructure (water, sewer, power, fiber), and connectivity to populated areas for access to labor.

Andres participated in a design and development discussion focused on the importance of progressive technology when building data centers. As a panelist, Andres shared some of DPR’s best practices in technology utilization, including:

  • The use of laser scanning and drones, which help transform facilities into more adaptable and flexible spaces, ultimately reducing uncertainty during the construction process.
  • The creation of a collaborative work environment with real-time project management tools to continuously reaffirm what the customer wants to build and how they want to build it.
  • The importance of technical platforms to integrate virtual designs in design-assist and build-out.

Industrial buildings and data centers have been equipped with more features in recent years and are continuing to evolve. Data centers are transforming to denser builds with more power and cooling. Like DPR, other client-serving companies are creating their own standards of certification, which can lead to an entirely different approach to build-outs and the overall business purpose of a project.

Overall, both conversations captured new and upcoming trends seen across the country in the business and development of data centers. From fundamental project planning to advancements in technology, both panels influenced audiences by providing a variety of outlooks and experiences, as well as robust strategy.

May 24, 2016

Bloomberg Takes Viewers Inside Facebook’s Sweden Data Center

Status updates, comments, likes, photos, videos... they all require data and need to be accessible within just a few clicks, 24 hours a day, by Facebook's 1.65 billion monthly active users around the world.

That calls for large quantities of data, strong processing power, and a lot of cooling. This is why the seaside town of Luleå, located on the edge of the Arctic Circle and considered Sweden's Silicon Valley, was a perfect location for Facebook to build one of its massive greenfield data center developments.

At 300,000 sq. ft., Facebook's Luleå Data Center is one of the largest and most efficient data centers ever built. The data center, like Facebook's other facilities built by DPR in Oregon, North Carolina and Texas, features a super-efficient design that uses 100 percent outside air to cool the data center. This eliminates the need for power-hungry chillers to cool the tens of thousands of servers that run around the clock. Excess heat that is generated from the servers is pumped back into the building to keep the office space warm for employees. Power is provided locally by a reliable, 100 percent renewable energy source: hydroelectricity. Hydroelectricity is so reliable that Facebook has been able to eliminate the number of onsite backup generators by 70 percent.

As part of Bloomberg's "Hello World" video series, in which journalist and best-selling author Ashlee Vance explores the tech scene in various countries, Ashlee finds out where "all [his] embarrassing photos live" while he takes a guided tour of the facility with Joel Kjellgren, Facebook's site manager. 

DPR completed building one of Facebook's Luleå development, aptly named "LLA1," in 17 months through a joint venture between NCC Construction Sweden and Fortis Construction in Portland, Oregon. LLA1 achieved LEED-NC Gold certification by the U.S. Green Building Council and received top honors with the "Innovation in the Mega Data Center" award at the Datacenter Dynamics EMEA Awards in 2014.

February 23, 2016

LinkedIn Goes West

When you think of Portland, you might think of coffeehouses or the infamous Pacific Northwest rain. But did you know Portland is also quickly becoming a technology hub with a flourishing economy and countless new opportunities for innovation?

This very fact is one of the reasons LinkedIn has decided to build its newest data center in Hillsboro, a suburb just outside of Portland. With existing data center sites in Virginia and Texas, this new west-coast site will allow LinkedIn to achieve their goal of establishing data centers in varied regions across the United States.

Additionally, this location enables LinkedIn to have direct access to green power. For 200 days out of the year the data center will utilize free cooling, reducing their overall energy usage. The location will also allow LinkedIn to explore new options for renewable energy and sustainable sourcing, leading to the company’s ultimate goal of 100 percent renewable energy usage.

So why the need for another data center? In the last year, LinkedIn’s storage and processing needs have increased by 34 percent. Working to stay ahead of this rapidly growing demand, LinkedIn is adding more capacity in order to maintain the consistent and reliable service LinkedIn members are expecting.

Construction of the data center will be completed in two phases. Phase 1, the build-out of data hall space for LinkedIn in an existing STACK INFRASTRUCTURE colocation facility, is comprised of 15,000 sq. ft. of white space and 3,000 sq. ft. of ancillary space. This will be DPR’s second time working in this facility, with the first time being in 2012 for Fortune Data Centers (now known as STACK INFRASTRUCTURE).

Phase 2 is the construction of a new 100,000-sq.-ft. data center shell, 15,000 sq. ft. of which is confirmed for LinkedIn. Once both phases are complete, STACK INFRASTRUCTURE's entire facility will be served by 16 MW of IT Critical Power.

Due to LinkedIn’s rapid growth and need for quick deployments, fast-track delivery is crucial for this design-build project. Even with the record-breaking amount of rainfall the area is experiencing, the project team remains confident in their scheduled completion dates.

LinkedIn’s latest data center will go online late 2016.

The LinkedIn Data Center Services team breaking ground on the new facility in Hillsboro, OR with the help of the STACK INFRASTRUCTURE team and the Mayor of Hillsboro.

February 9, 2016

Build It Again, DPR

Almost 20 years after first entering the Richmond, Virginia market to build a semiconductor plant for Motorola and Siemens—a project that still ranks as one of the fastest-to-market facilities of its kind ever built—DPR is back at the same site. The current project? Repurposing and converting the former White Oak Semiconductor plant into a modern data center for Quality Technology Services (QTS).

“I guess if you’re in the technical building industry long enough, you get to build great things twice,” said DPR's Mike White, who is managing the current QTS data center project and also managed the original White Oak project back in the 1990s. 

With a wealth of technical expertise, this project was a perfect fit for DPR to take on. However, that's not to say the project was without its challenges, including aggressive energy use goals and a focus on the maximum repurposing of existing assets. 

How did the project team tackle these challenges? Find out by reading the full story here